Permutasi dan kombinasi (MatDis)

Permutasi
Permutasi adalah  sebuah konsep penyusunan sekumpulan objek/angka menjadi beberapa urutan berbeda tanpa mengalami pengulangan.
Di dalam permutasi, urutan sangat diperhatikan. setiap objek yang dihasilkan harus berbeda antara satu dengan yang lain. kita ambil contoh, urutan huruf ({ABC} berbeda dengan {CAB} begitu juga dengan {BAC) dan {ACB}). Rumus untuk mencari banyaknya permutasi n unsur jika disusun pada unsur k di mana k ≤ n adalah:

Rumus Permutasi


P(n,k) =   n!  
  (n-k)!

Prinsip Perkalian :
Jika sebuah aktivitas bisa dibentuk dalam t langkah berurutan dan langkah 1 bisa dilakukan dalam n1 cara; langkah kedua bisa dilakukan dalam n2 cara; ….; langkah t bisa dilakukan dalam nt cara, maka banyaknya aktivitas berbeda yang mungkin adalah n1.n2….nt.

Prinsip Penjumlahan :
Andaikan bahwa X1, X2, …., Xt merupakan sebuah himpunan-himpunan dan himpunan ke-i Xi mempunyai ni anggota. Jika {X1, X2, …., Xt} merupakan sebuah famili saling lepas (yakni, jika , Xi  Xj = Ø), maka banyaknya anggota yang mungkin bisa dipilih dari X1 atau X2 atau … atau Xt adalah n1+n2+…+nt.

Contoh Soal 
Berapakah banyaknya bilangan yang dibentuk dari 2 angka berbeda yang dapat kita susun dari urutan angka 4, 8, 2, 3, dan 5?
Pembahasan:
Pertanyaan di atas dapat disimpulkan sebagai permutasi yang terdiri dari 2 unsur yang dipilih dari 5 unsur maka dapat dituliskan sebagai P(5,2). tinggal kita masukkan ke dalam rumus.

P(5,2) =   5!     = 5x 4 x 3 x 2 x 1 = 120 = 20
                  (5-2)!        3 x 2 x 1              6

Maka ada 20 cara yang dapat dilakukan untuk menysyn bilangan tersebut menjadi 2 angka yang berbeda-beda (48, 42, 43, 45, 84, 82, 83, 85, 24, 28, 23, 25, 34, 38, 32, 35, 54, 58, 53, 52).

Kombinasi
kombinasi merupakan sebuah kumpulan dari sebagian atau seluruh objek dengan tidak memperhatikan urutannya. di dalam kombinasi, {AB} dianggap sama dengan {BA} sehingga sebuah kombinasi dari dua objek yang sama tidak dapat terulang.

Rumus kombinasi dari suatu himpunan yang mempunyai n elemen dapat dituliskan sebagai berikut:

Rumus Kombinasi

C(n,r) = nCr = nCr =     n!     
                                     r!(n-r)!

Mari kita amati penggunaan rumus tersebut untuk menyelesaikan soal-soal di bawah ini:


Contoh Soal
Manuel Pelegrini membawa 16 pemain saat Manchester City melawan Liverpool di Etihad Stadium. 11 orang diantaranya akan dipilih untuk bermain pada babak pertama. jika kita tidak memperhatikan posisi pemain, berapakah banyaknya cara yang dapat diambil oleh pelatih untuk memilih pemain?

Pembahasan:
Karena tidak mementingkan posisi pemain, maka kita gunakan rumus kombinasi:

C(16,11) =       16!        =  16 x 15 x 14 x 13 x 12 x 11!  
                   11!(16-11)!                      11!5!                          

=          524160         =  524160  = 4368
        5x4x3x2x1                120

Komentar

Postingan populer dari blog ini

Graf Planar (Matematika diskrit)

Infix Prefix Postfix Matematika diskrit

Tree (pohon) Matematika Diskrit